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Abstract 

A new type of topological index is proposed. Its definition is based on the concept 
of atomic charge distributions in organic molecules. Introduction of electronic in addition 
to purely topologic factors allows consideration of heteroatom-containing structures as 
well. It is demonstrated that the index has a low degree of degeneracy, thus suggesting 
it can be used for coding chemical structures, discrimination of redundancies in structure 
0 generation programs, and studies of quantitative structure - activity relationships for 
hetero atom-containing structures. 

1. In t roduct ion  

The trend for mathematization of chemistry has brought into the limelight the 
close relationship between the mathematical notion of graph and the chemical notion 
of structure. Formally, it can be defined as follows [1]: 

g=( 'E ,  E, f )  c=~ s = ( A ,  B, f ) ,  (1) 

where g is a graph, s a chemical structure, Vis  the set of vertices v/, corresponding 
to the set A of atoms a i in the structure, E is the set of edges ei, corresponding to 
the set B of chemical bonds b i, and f is an incidence function (mapping) that assigns 
vertices (atoms) to the edges (bonds). For the case of simple non-oriented graphs, 
there are additional requirements on the incidence function f [2]. The set E should 
then be a subset of  V x  ~ where the Cartesian product V x  Vdenotes  all pairs of 
vertices (vi, vj). E should also possess the properties of symmetry (i.e. from (vi, vj) 
belonging to E follows that (vj, vi) also belongs to E) and antireflexivity (if (vi, vj) ~ E, 
then v i ~ vj) (see e.g. [2] for different definitions of graphs). 
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A main deficiency of any particular realization of the graph-structure relation- 
ship (1), in spite of its clear mathematical formulation, is its non-invariance under 
permutation of the numbering of vertices. Thus, the adjacency matrix A (a symmetric 
square matrix obeying the following relations: Aii = 0,  Ai j  = 1 when two vertices 
(atoms) i and j form an edge (bond), and Aii= 0 otherwise) is dependent on the 
numbering of the vertices. The same is true for the more elaborate distance matrix 
D, which is of the same order as A but whose entries are the minimal distances 
between vertices i and j (vertex relabelling leads in both cases to permutations of 
rows and/or columns in A and D). The invariant sets of a graph are defined 
as sets of numbers that do not depend on the orientation of the graph and its numbering [3]. 
Different procedures for the construction of graph invariants are outlined in [4]. 
Some obvious examples of graph invariants include the number of vertices and 
edges of a graph, the vertex degree, the distance sum of a vertex, etc. [4]. 

On the other hand, the graph-structure relationship (1) is used for a successful 
mapping of the set of chemical structures onto the field of real numbers. This is 
accomplished by constructing the so-called topological indices (TIs) from different 
graph-theoretical invariants. The TIs can formally be represented by the following 
relation: 

TI = G(g), (2) 

where G is an operator, mapping the multidimensional matrix (either A or D) repre- 
sentation g of a graph onto the (one-dimensional) space of the real numbers. A basic 
requirement is that mapping of graphs gl, g2, which are isomorphic, should results 
in G(gl) = ~ ( g 2 )  [2] .  Of course, the opposite assertion need not be valid: equal TI 
may correspond to different graphs (chemical structures) - degeneracy of the TI. The 
so-cNled "isomorphism disease", which according to [2] is not an uncommon syndrome 
among beginning practitioners in the field, stems from that requirement for lower 
degeneracy of the TIs. Numerous other requirements on the TIs are listed in [5]. 
The use of TIs in different branches of chemistry, including their ability to correlate 
with various physicochemical and biological properties of different molecules, is 
extremely well documented. There are several books and numerous reviews published 
on the subject [4, 6 - 10]. However, despite their ubiquity, TIs possess some apparent 
deficiencies: 

First, there is no mathematically rigorous proof that each newly defined 
index is nondegenerate in all cases. The nondegeneracy requirement is also important 
when TIs are used for the description and numerical coding of chemical structures 
among their other uses. For many practical applications, such as avoiding duplications 
in the case of computer structure generation, chemical compound nomenclature, 
documentation and retrieval, structure - property (structure - activity) correlations, 
TIs with the highest possible degree of discrimination are needed. 

Second, in most cases graphs constructed on the basis of (1), the so-called 
chemical (or molecular) graphs, are hydrogen depleted, representing only the carbon 
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atom skeleton structures. They do not contain information on the nature of. the 
atoms and chemical bonds in the corresponding molecule. Treatment of "real" 
structures without overlooking the hydrogen and/or heteroatoms and muliple bonds 
is needed in many practical applications, e.g. quantitative s t ructure-  activity 
correlations, computer drug design, etc. That is why new approaches for modification 
of TIs and construction of more elaborate ones have to be advanced. 

Third, a full characterization of branching in molecular structure, based on 
TIs, has not yet been achieved [3,5, 11,12]. The problem of hierarchical ordering 
of structures and finding criteria for describing molecular complexity is a challenging 
one, and has still to be resolved. 

Starting from the first TI introduced almost 150 years ago [13], a great variety 
of indices has been constructed. There are more than 130 indices proposed up to 
now. The introduction of new TIs is aided in many cases by intuition rather than 
some reasonable physicochemical argument or mathematical rigour. In 1947, Wiener 
devised his famous index, which is still in use [14]: 

W = 1/2 y~ ~., Diy. (3) 
i j 

However, time has proven that W has a high degree of degeneracy; hence, 
it is not appropriate for dealing with isomorphism (e.g. discrimination of isomers). 

One of the more widely exploited TIs introduced so far is the molecular 
connectivity index, proposed by Randi4 [151: 

i j t 
(4) 

It was specifically designed to characterize molecular branching. Despite its lower 
degeneracy and its potency in correlational studies, this index is also not ultimately 
universal and applicable for all instances, e.g. for characterizing heteroatom-containing 
structures. 

In a recent paper, Balaban et al. [16] introduced the concept LOcal Invariant 
Sets (LOIS), which are comprised of the so-called local indices. The local indices 
characterize separate vertices of the chemical graph. LOIS are further exploited for 
the construction of global indices, using already known formulations. These global 
indices, as most of the other indices, are based on hydrogen depleted graphs. 
However, there is a possibility to characterize different atoms by setting the nondiagonal 
adjacency matrix entries to different values (e.g. atomic numbers, etc.) 

In the present paper, we report an effort to construct a novel topological 
index which takes into consideration the electronic structure of the molecule as 
well. To this end, we exploit the LOIS concept by introducing local invariants based 
on the notion of partial atomic charges. This approach allows us to deal with "real" 
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chemical structures, while also accounting for the presence of hydrogen and/or 
heteroatoms. Some other applications of the proposed TI are discussed as well. 

2. Construction of  local vertex invariants 

The definition (2) suggests that in order to construct a TI, an appropriate function 
(with the matrix elements of A or D as arguments), featuring certain structural properties, 
should be devised. The great diversity of TIs stems from the variety of functions 
used. A direct procedure for the construction of TIs has already been outlined [16]. 
The first step, the "assignment", consists of defining the LOcal Vertex Invariants 
(LOVIs), which comprise the LOIS. Balaban et al. [16] obtain the different sets 
of LOVIs as a solution of a system of linear equations that include a matrix derived 
from the adjacency matrix. The second "operational" step is the computation of a 
global TI as a function of the LOVIs. (The terms "local vertex invariant, local invariant 
set" and the acronyms LOVI, LOIS are borrowed from [16].) This two-step procedure 
is rather straightforward and general no matter which approach is used for the 
definition of LOVIs. 

Bangov has recently introduced a novel LOVI, which was termed Atom in 
Structure Invariant Index (ASII) [17-  19]. It is defined by the following formula: 

ASII = ASII o - Nit + Q, (5) 

where ASII o is an initial value characterizing the type and hybridization state 
of a given atom i (table 1). Nli is the number of attached hydrogen atoms to the 
atom i. Q is the charge density (net atomic charge) of the atom, calculated through 
some of the fast and comparably reliable empirical methods. We employ the Iterative 
Partial Equalization of Orbital Electronnegativities (IPEOE) procedure of Gasteiger 
et al. [20]. It defines the orbital electronegativity in terms of purely atomic properties 
- ionizat ion potentials and electron affinities. This procedure provides net atomic 
charge values, which are different for nonsymmetric atoms and equal for equivalent 
(symmetric) atoms. The nonoverlapping values of the charge densities enable 
differentiation of atoms of different types and hybridization. The first term in 
expression (5) accounts for the type and hybridization state of the atom, while the 
second term account~ for the attached hydrogen atoms. The connectivity within the 
structure is estimated by the third term - t h e  net atomic charge. It depends on the 
entire connectivity of the molecule, although only "through the bond" interactions 
are taken into account. As long as the IPEOE computational scheme involves 
successively a, 13, ) ' . . .  etc. environment, this term might act as an LOVI in itself. 
While the ASIIs are not obtained via the approach prescribed by Balaban et al. [1611] 
for construction of LOVIs (i.e. as a solution of a system of equations), they nevertheless 
fulfill the conditions for a local graph invariant listed in [16]. The ASIIs reflect not 
only topological but more subtle chemical properties of the molecular structure. 
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Table 1 

Initial Atom-in-Structure Invariant  Index (ASl]o) 
values for atoms in different hybridization states 

Atom ASl I  o 
(hybridization state) 

C 

N 

0 

S 
F 
C1 
Br 
I 

sp 4 

sp 7 
sp 2 (olef'mic) 11 

sp z (aromatic) 13 

sp 3 15 
sp 2 18 

sp 20 

sp 3 
sp 2 

23 
25 

28 
32 
33 
34 
35 

The ASIIs were employed in the automatic assignment of 13C NMR signals 
to carbon atoms [17]. Partitioning of carbon atoms into different classes according 
to their 1 3 C - H  multiplicities (in the following order: singlet, doublet, triplet and 
quartet) and ranking both ASIIs and chemical shifts in each class provides their 
automatic assignment. In most cases, juxtaposing of the two ranks coincides with 
the correct assignment. 

The ASIIs were also employed for perception of the topological symmetry 
of the atoms in a given structure and comparing it to the chemical equivalence of 
the 13C NMR signals [17]. Thus, structures with symmetry that does not correlate 
with the signal equivalence class are removed. The ASIIs have also been used for 
partitioning of the vertices into different automorphism classes in a new structure 
generation approach [19]. In all cases examined, we have confirmed the correlation 
between ASIIs and the corresponding vertex features. 

3. Global  index construct ion 

To define a global index on the basis of  the ASIIs  with low or hopefully no 
degeneracy, an appropriate function has to be introduced in the "operational" step. 
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Let us form the set X of ASIIs which we shall denote further as x i, x i ~ X.  
It is clear from relation (1) that a global graph invariant may be composed of local 
invariants that account for both vertices and edges. The information for the graph 
vertices is in our case included in the x i. We define each element of E by the 
product: xi xj (i.e. specify the form of the incidence function in (1)). Subsequently, 
each product is weighted and summed: 

C r I  = ~ W i j X i X j .  (6) 
i~j 

We define the novel global invariant that is obtained as a Charge-related Index 
(CrI). It is obvious that the CrI  is invariant since the sum (6) does not change under 
permutation of the numbering of the graph. 

An explicit realization of CrI  was introduced recently [19]. It is the global 
ASIIg index, defined by choosing the weights wij = w = (1/~zxl). This index is computed 
by the following formula: 

1/2 

A S I I g =  10 ~ . , ~ , ( w x i x j )  I (7) 
i~j J 

The global ASIIg index is extremely useful in dealing with isomers. Our 
experience [19] in applying the ASIIg for elimination of duplications in the case 
of structure generation has confirmed our belief that it has a very low degree of 
degeneracy. Based on our experience with the global ASIIg, we suggest a new set 
of weights for the global CrI. The wij are defined as the reciprocal of the corresponding 
distance matrix D elements: Wij : 1/Dij (i ~j ) .  Hence, the new index that we propose 
- Charge-related Toplogical Index (CTI) - is computed according to: 

C T I  = ~ ( x i x j / D i j  ). (8) 
i~j 

. The charge topological index (CTI) - a highly discriminating topological 
index 

The weight wij for pairs (xixi) of vertices which form edges is equal to 1 
(Dii = 1 for i, j labeling adjacent vertices v i, vj). It is always greater than the weights 
for pairs of vertices not forming an edge. Hence, for a set of isomers the different 
connectivities are expressed both by different terms Q in (5) and by different weights 
1/Dij in (8). We suggest that the CTI has a high discriminating power and a very low 
degree of degeneracy. Evidently this conjecture cannot be rigorously proven (the 
same applies to the global ASHg), but we will be indebted if any counterexamples 
are found. An illustration of the discrimination power of the CTI is given in fig. 1, 
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where the CTI values for different pairs of  alkane isomers are presented. All these 
isomer pairs show some degeneracy for different other TIs, but the CTI is different 
for all of  them. The values of the CTI and ASHg for the series of lower alkanes are 
listed in table 2. Eighteen different hydrocarbon structures, containing four carbon 

Table 2 

Charge-related topological index (CTI) and ASIIg, calculated for 
the series of lower alkanes (n = 2-7) 

n Alkane CTI ASIIg 

2 ethane 0.8682 7.0711 
3 propane 4.0641 8.1109 

4 n-butane 9.5193 8.9255 
4 2-methylpropane 9.6103 8.5526 
5 n-pentane 16.3392 9.2492 
5 2-methylbutane 17.3298 9.3031 

5 2, 2-dimethylpropane 17.5292 8.8020 
6 n-hexane 24.1502 9,4230 
6 2-methylpentane 25.5174 9.4480 
6 3-methylpentane 26.4147 9.7261 
6 2, 3-dimethylbutane 27.4097 9.7179 
6 2, 2-dimethylbutane 27.5181 9.4863 

7 n-heptane 32.7421 9.5314 

7 2-methylhexane 34.3215 9.5424 
7 3-methylhexane 35.5936 9.7733 
7 2, 4-dimethylpentane 36.0662 9.5524 
7 3-ethylpentane 36.8652 9.9987 
7 2, 2-dimethylpentane 37.0763 9.5624 
7 2, 3-dimethylpentane 37.8630 9.9698 
7 3, 3-dimethylpentane 38.8731 9.9482 
7 2, 2, 3-trimethylbutane 39.8726 9.9269 

atoms (saturated and unsaturated; acyclic as well as cyclic) are shown in fig. 2, 
together with their corresponding CTI. The CTI and the ASIIg for cyclic 
structures, displaying assignment degeneracy for various LOIS [16], are presented 
in fig. 3. The enthalpies of formation of C2-C 8 alkanes [23] versus their respective 
CTI are plotted in fig. 4 in order to illustrate the potential applicability of the CTI  
for structure-property correlations. Another illustration (fig. 5) includes the 
correlation between the motor octane numbers of the C4-C 9 normal alkanes [16] and 
their CTI. 



P.A. Demirev  et al., A novel topological index 375 

P to to O0 r/5~ 

"- o~ tO to ~ 

• ~ o6 o5 oo o~ o6 

tO 
o tO 

,~- ~ ~a to  

to  

• tt~ 

0 

E 

~gJ 

r13 

to  

o4 

,t 



376 P.A. Demirev et al., A novel topological index 

~ ' "  a ~ a2 W 1 

CTI 71.3978 67,0382 
ASllg 10.9393 10.4508 

bl b2 

CTI 77,6826 78.5515 
ASllg 10,6195 10.7233 

Fig. 3. CTI and ASHg for cyclic graphs, displaying assignment degeneracy for various 
LOIS [16] (structures b 1 and b 2 have also the same distance sum cormectivivy index). 
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Fig. 4. Correlation (R = 0.968) between the enthalpies of formation ( -AH r, data taken 
from [23]) of the C~-C s alkanes and their CTI (values listed in tables 2 and 4). 



P.A. Demirev et al., A novel topological index 377 

E 
e,,,, 

o 
o 

=I 

100 

90 

80 

70 

60 

50 

40 

30 

20 

' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 1 ' ' ' '  

\ 

0 10 20 30 40 50 60 

CTI 
Fig, 5. Correlation (R = 0.986) between the motor octane 
number [16] of the normal C4-C 9 alkanes and their CTI  (CTI 
of n-nonane 51.7677, other values listed in tables 2 and 4). 

5. CTI for heteroatom-containing structures 

The CTI can be assigned to structures containing heteroatoms as well. The 
discrimination of heteroatoms in the chemical graphs has always been a drawback 
in the construction of TIs, although several approaches to counteract this difficulty 
have been forwarded [2, 24, 25] (see also references therein for other approaches). 
Their essence consists of devising recipes for modification of the distance matrix 
D for the sake of including multiple bonds as well as heteroatoms. Balaban has 
modified the averaged distance sum connectivity index J [21] in a way that takes 
into account the relative electronegativities or the relative covalent radii of different 
heteroatoms as compared to the C atom [25]. In the present approach, introduction 
of heteroatoms is naturally accomplished through the local ASII. An illustration of 
the application of CTI for heteroatomic systems (different isomeric amines- C4HllN) 
is presented in fig. 6. The dependence of the CTI values on different parameters 
is complex and thus does not allow the extraction of any clear-cut correlations. One 
may note that CTI increases from primary to tertiary amines. It is, however, evident 
that the type of C atom(s) connected to the N also plays a significant role. The CTI 
has also been calculated for the series of lower alcohols and the data are presented 
in table 3. As in the case with amines, the CTI values depend on several different 
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~ N  

T 

N. C .  

CTI ASllg 

61.8384 4.4838 

65.7839 4.5823 

66.9244 4.8600 

70.2266 5.1993 

73,6155 5,2666 

74.7375 5.4408 

75.7826 5.5016 

N +  81.7102 5.8898 

Fig. 6. Charge-related topological index (CTI) and 
ASIIg, calculated for different isomeric amines - C4HllN. 

Table 3 

Charge-related topological index (CTI) and ASIIg, calculated for 
the series of lower alcohols (n = 2-5) 

No. n Alcohol CTI ASIIg 

1 2 ethanol 56.3998 3.1243 
2 3 propane-3-ol 78.9678 3.2428 
3 3 propane-2-ol 92.9637 3.8743 
4 4 butane-4-ol 97.7223 3.3510 
5 4 2-methylpropane-3-ol 103.9319 3.4069 
6 4 butane-3-ol 117.8204 3.9906 
7 4 2-methylpropane-2-ol 132.0219 4.5216 
8 5 pentane-5-ol 114.7124 3.4534 
9 5 2-methylbutane-4-ol 118.8611 3.5034 

10 5 2-methylbutane-l-ol 124.9558 3.5375 
11 5 2, 2-dimethylpropane-3-ol 131.3143 3.6072 
12 5 pentane-4-ol 137.9558 4.0729 
13 5 pentane-3-ol 144.0450 4.1020 
14 5 2-methylbutane-3-ol 145.0783 4.1408 
15 5 2-methylbutane-2-ol 159.1723 4,6379 
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factors. The CTI increases both with branching and in the direction from primary 
through secondary to tertiary alcohols. One may argue that the dependence on the 
second factor is more pronounced, since the n-pentane-5-ol precedes s-butanol and 
t-butanol follows after all primary pentanols. 

In the present study, we do not aim to correlate the CTI with any physicochemical 
parameter of the corresponding structure (similar correlations are currently being 
investigated and will be the subject of a future account). We would like to speculate, 
though, that the physical meaning behind the CTI might be connected to the sum 
of "through the bond" Coulomb interaction energy terms between the pairs of 
different atoms in the structure as following from eq. (8). 

6. CTI and the branching of chemical structures 

The concept of branching in chemical structures is not a new concept [5, 15]. 
It has always been linked to the more profound idea of molecular complexity in 
general. It is intuitively clear that a rough measure of branching in a molecular 
structure may be provided by the number of its branching points. Thus, in the case 
of, for example, isomeric alkanes, the two extremes should be the normal (linear) 
alkanes - the non-branched species - and the alkanes with maximum number of 
quaternary carbon atoms - the most branched species. Despite this, there has been 
a long-standing argument as to how molecular branching should be defined, even 
when relatively simple structures are considered. The problems and challenges in 
characterizing molecular branching and molecular complexity have been extensively 
reviewed [11, 12]. A way to circumvent the difficulties arising in finding an appropriate 
definition of branching is to try to characterize it in quantitative rather than in 
qualitative terms. Therefore, different mathematical criteria for comparing and 
hierarchical ordering of (mainly acyclic alkane) structures have been intro- 
duced [26]. The use of Young diagram techniques, random walk on trees and 
characteristic graph polynomials should be noted among other mathematical 
approaches [ 12]. Different TIs have also been employed for quantitative description 
of branching in molecular structures, since TIs reflect both the size and the shape 
of a molecule [12]. Bertz introduced a new mathematical model of chemical complexity 
through the notion of a graph derivative [11]. While he criticizes the TI approach 
for the ordering of graphs and molecular structures as a "force-fit" one, he argues 
that the values of a "good" TI should increase with the increase in molecular branching. 
He also notes that J (the averaged distance sum connectivity index) parallels the 
ordering of the isomeric pentanes, hexanes, heptanes and partially the octanes, 
obtained using the graph derivative approach [11]. 

It appears that branching is a purely topological property, although the particular 
arrangement of atoms in a molecule influences the intramolecular interactions and 
its electronic configuration on the whole. Since a combination of topologic and 
electronic factors is taken into account when computing the CTI, we tried to use 
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Table 4 

Charge-related topological index (CTI) and ASIIg, calculated for the 
series of octanes (the order of different isomers, according to the branching 
index of Bertz [11], is given in brackets) 

Compound CTI ASHg 

octane (1) 
2-methylheptane (2) 
3-methylheptane (4) ° 
2, 5-dimethylhexane (3) 
4-methylheptane (5) 
2, 2-dimethylhexane (12)" 
3-ethylhexane (7) ° 
2, 4-dimethylhexane (6) 
2, 3-dimethylbexane (8) 
2, 2, 4-trimethylpentane (13) ° 
3, 4-dimethylhexane (9) 
3, 3-dimethylhexane (14)* 
2-methyl-3-ethylpentane (10) 
2, 3, 4-trimethylpentane (11) 
3-ethyl-3-methylpentane (15) 
2, 2, 3-trimethylpentane (16) 
2, 3, 3-trimethylpentane (17) 
2, 2, 3, 3-tetrarnethylbutane (18) 

41.9796 9.6055 
43.6962 9.6092 
45.1788 9.8061 
45.4882 9.6124 
45.5535 9.8070 
46.8757 9.6178 
47.0352 9.9999 
47.1357 9.7960 
48.0352 9.9747 
48.9985 9.6214 
49.3077 10.1508 
49.4228 9.9561 
49.6818 10.1515 
50.6825 10.1183 
51.5943 10.2822 
51.6971 10.0916 
52.5966 10.2434 
54.6152 10.1806 

it for ordering of  chemical structures. The results for the case of  the C2-C7 alkanes 
are presented in table 2, and those for the octanes in table 4. We note, in comparing 
the CTI  ordering to the "logically derived order of  branching" advanced by Bertz 
[11], that the lower alkanes up to C6 are following the same ordering. Only one of  
the eleven heptanes, namely 2, 4-dimethylpentane, does not fit into Bertz's classification 
scheme. Six out of the eighteen octanes do not parallel the ordering suggested by 
Bertz, which is the same number when compared to the Balaban index J [11]. 

7. P r o g r a m  

The recipe for the calculation of  the CTI  has been implemented in a computer 
code for an IBM compatible PC. To this end, a previously created program for 
structure generation and automatic assignment of 13C NMR chemical shifts [17 - 19] 
has been modified in order to incorporate the above-described algorithm. The procedures 
for coding and chemical structure input are detailed elsewhere [17]. The adjacency 
(A) and the distance (D) matrices are then constructed, which allows calculation of  
the Wiener (W) and Randi6 (R) topological indices and the ASIIg as well. The program 
is written in Turbo PASCAL (Borland International Inc., v.5.0). It is user-oriented 
and in menu-driven interactive format. Possibilities for using other empirical methods 
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for calculation of the charge densities, such as the method of Abraham et al. [27], 
are also built into the program. 

8. Conclusion 

A new type of topological index, termed the Charge Topological Index, has 
been proposed. Its definition, based on the concept of atomic charge distributions 
in organic molecules, follows a recipe suggested by Balaban [16] for the introduction 
of global TIs. The computational procedure is more complicated, including calculations 
of quantities (e.g. charges) which are not directly connected to purely molecular 
topological notions. The requirement for computer calculation of the CTI  is not a 
serious impediment to its use, since in almost all applications of TIs nowadays the 
personal computer is a standard tool employed by chemists. The introduction of 
purely atomic factors in addition to the topological ones allows consideration of 
heteroatom-containing structures. It has been demonstrated that the CTI has a low 
degree of degeneracy as well. Thus, we suggest that the CTI is not a mere addition 
to the plethora of different Tls, but that it can find some real practical applications. 
These may include, among others, coding of chemical structures, discrimination of 
redundancies in structure 0 generation programs, and studies of quantitative 
structure - activity rclationships for heteroatom-containing structures in, for example, 
computer drug design. 
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